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ABSTRACT 

The thesis considers the dynamic stability of the bending vibrations of 
a uniform free-free beam subjected to an end thrust of magnitude 
To + TI cos 51 t , where To and T1 are constants. The mathematical 
model considered approximates an actual rocket vehicle; hence the results 
of this investigation are applicable to rockets. The direction of the thrust 

is assumed to be controlled by means of a simple feedback system which 
uses an attitude sensor to control the thrust gimbal angle; thus the beam 
would have directional stability as a rigid body. The equations of motion 
are derived for two-dimensional motion. Longitudinal compliance of the 
beam is included, but shear deformations, damping, and rotary-inertia 
effects are neglected. Small distortions are assumed. This assumption 
results in linear, partial differential equations which are solved by expand- 
ing the lateral displacement function in terms of two rigid-body functions 
and of the eigenhctions of the unloaded free-free beam. Application of the 
Galerkin method then leads to a set of linear, second-order, ordinary dif- 
ferential equations, having in general, periodically-varying coefficients. 

For the special case TI = 0 , the equations are linear differential 
equations with constant coefficients. The stability of the vibration modes 
is determined in this case by observing the trend of the natural frequencies 
as increasingly larger values of To are considered. Impending instability 

is characterized either by the reduction of one of these frequencies to zero 
or  by the coalescence of a pair of frequencies. In the case of the beam 
with no feedback control, it is found that the initial instability occurs when 

2 
the two lowest bending frequencies coalesce at a value To = 109.9 EIh 
where I is the Iength of the beam and E1 its bending stiffness. With a 
feedback control system, regardless of the magnitude of the control-system 
parameters, the thrust may not exceed To = 25.67 EI/I without causing 

the system to become unstable. 
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In the more general case ( T I  f 0 )  , the governing differential equations 
have certain coefficients which vary sinusoidally with time. A method for pre- 

dicting the stability of the system by investigating the nature of the solutions to 
this set of equations is developed. The method is similar to that used by Hill to 
solve the less general Hill (or Mathieu) equation. 

When the beam is very stiff longitudinally, the most severe instabilities 
occur when the frequency of thrust variation is in the vicinity of either twice 
one of the bending natural frequencies, o r  the sum o r  difference of two of these 
frequencies. With finite longitudinal compliance, such that the fundamental 
longitudinal natural frequency of the beam is in the neighborhood of one of its 
lower bending natural frequencies, significant instabilities also occur for the 
frequency of thrust variation in the vicinity of the longitudinal natural frequen- 
cies. These instabilities are most severe when the fundamental longitudinal 
frequency is itself in the vicinity of either twice one of the bending frequencies, 
o r  the sum o r  difference of two of these frequencies. It is found that insta- 
bilities may occur for arbitrarily small magnitudes of To , although as To 
becomes larger, the widths of the unstable regions usually become larger. 

The following conclusions regarding the stability of vibrations of a flexible 
rocket vehicle are based on the results of the investigation. When the thrust is 
assumed to be constant (TI  = 0 )  , the magnitude of the critical thrust con- 
siderably exceeds the actual thrust of current, large missiles. On the other 

hand, the existence of parametric instabilities due to periodic variations in the 
thrust magnitude is a definite possibility in modern missiles. Furthermore, 

it appears that longitudinal compliance may play a significant role in these 
instabilities. 
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Longitudinal acceleration a 

A Beam cross-sectional area 

The kth element in the matrix 

Square array of elements appearing in characteristic 
determinant 

c [ dm) 
D. 
1, j 

Bending stiffness of uniform beam E1 

Fundamental bending frequency of cantilever beam 

jth bending frequency of cantilever beam with 
tangential end thrust 

Coefficient in the jth row and kth column of matrix 
IFjk1 

= F p” 
jk 

Acceleration due to gravity 

Coefficient in the jth row and kth column of matrix G [ jk l  
= G j $ j 2  

G. F. Growth factor 

Function formed from A ( a )  to eliminate singularities 

Identity matrix 

Constants evaluated so  as to eliminate singularities of H(a)  K. 
J 

Directional control factor determining thrust vector 
gimbal angle Ke 

I Length of uniform beam 

Mass per unit length of beam m 

Moment distribution in beam; also, range of index m in 
evaluation of A.(&.) 

J J  

M 
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N Number of bending degrees of freedom arssumed in numerical 
analysis 

Lateral force on beam arising from component of thrust due 
to gimbaling 

P ’ 

Axial force distribution in beam P 

Pr Product of diagonal elements of 4a) 

Rigid-body generalized coordinates 

nth bending generalized coordinate 

Modulus of z TI/= 

Sum of nondiagonal elements of 4a) 

‘A’ qB 

9a 
R 

S 

t Real-time variable 

Amplitude of constant thrust TO 

T1 Amplitude of sinusoidally varying thrust 

Critical end thrust for cantilever beam with direction of 
thrust pmallel to axis of beam TC 

TE Euler load for pin-ended beam 

Nondimensional thrust  parameter = To2/~~ 

Longitudinal displacement of particles of beam measured in 
Lagrangian coordinate system 

V 

X 

Lateral force distribution in beam 

Lagrangian coordinate defining position of particles in 
unstrained beam relative to one end of the beam 

x - coordinate corresponding to the location of direction - 
sensing element in the beam G X 

Lateral displacement of axis of beam from fixed reference 
line 

= cos 2rcY z 

= cos 2 d i  

Characteristic exponent whose value indicates the stability of 
a system whose motion is represented by linear differential 
equations with periodic coefficients 
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Section 1 

INTRODUCTION 

1.1 STABILITY PROBLEMS I N  FLEXIBLE ROCKETS 

The existence of dynamic instabilities in flexible rocket vehicles is well 
h c ? ~ n r .  One of these, &&G instability arising from coupling of liquid-propellant 
sloshing with the rigid body motion and the control system, has in its more 
basic aspects been extensively investigated. The bending characteristics of the 
vehicle have some effect on this type of instability, but generally do not change 
its basic nature. 

Instabilities may exist, however, even in the absence of propellant 
sloshing, and in many cases the missile bending characteristics play an 
important role in these instabilities. Yet, despite the fact that in the design 
and development stage of a given missile configuration investigation of the 

stability characteristics is standard procedure, such investigations have never 
been extended into a comprehensive study of the stability of rocket vehicles. 
The reason for this lack of investigation is that the engine thrust of current 
missiles is sufficiently low that this type of instability presents no immediate 
difficulty. It is possible, however, that future missiles, designed to a minimum 
margin of safety, may encounter such problems. 

This thesis, then, is a first attempt at a comprehensive investigation of 
this area by considering the stability of a uniform, free-free beam under an 
end thrust. The direction of this thrust is controlled in such a way that the 
beam has directional stability as a rigid body; however, the bending character- 
istics of the beam may couple with the rigid-body motion in such a way as to 
cause instability. 

Another aspect which has not yet been considered (at least insofar as its 
effect on lateral vibrations is concerned) is the parametric instability due to 
the existence of a thrust having periodic variations in its magnitude. Under- 
standing which parameters contribute to the existence of such an instability is 
necessary to the continued development of the science of missile design. 
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1 . 2  SCOPE OF THESIS 

This thesis deals with the stability of the lateral motion of a uniform, 
flexible, free-free beam under an end thrust whose magnitude is To + T1 cos 52 t, 
where To , T1 , and sl are constants and t is time. The direction of the 

thrust is assumed to be controlled by means of a feedback system which pro- 
duces a linear relationship between the gimbal angle 8 (see Fig. 1) and the 
rotation 
(It is assumed that all motion occurs in a vertical plane. ) 

qG of the element at some predetermined location on the beam. 

Such a model represents an idealization of a slender, flexible rocket 
vehicle with directional control, having its engine thrust subjected to periodic 
variations in its magnitude. Such fluctuations may result from variations in 

the rate at which liquid fuel is fed into the combustion chamber, or possibly 
from periodic variations of the flow pattern of the gases passing through the 
exhaust nozzle. To an even larger degree, such periodic fluctuations are 
inherent in the operation of pulse-jet engines. 

An actual missile has, in general, highly nonuniform mass and stiffness 
distribution, structural damping, and mass transfer characteristics as well 
as servo lag, engine inertia, and rate feedback control. All of these effects 
are neglected in this analysis, as are aerodynamic forces and the effects of 
shear and rotary inertia. 

Because of this high degree of simplification, we wish to emphasize that 
the results presented in this thesis represent conditions which may be typical 
of similar conditions existing for an actual missile, but, except in a very 

general sense are not quantitatively applicable to a specific missile. For this 
reason we do not attempt an exhaustive study showing the effects of all the 
parameters involved, but rather choose to investigate certain typical values 
which would seem to be the most instructive. 

The cases to be investigated may be classified broadly into two categories: 
(1) TI = 0 , and (2) T1 # 0 . The equations of motion for the more general 
case ( T1 # 0 ) are derived in Section 2. 

The equations for case (1) are obtained from the more general equation 
by merely setting T1 equal to zero. Nevertheless the methods of solution 
for the two cases are quite different. For the case T1 = 0 , we must solve 

a system of linear ordinary differential equations with constant coefficients. 
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( a )  UNDEFORMED STATE 

To+Tt COSL! t 

( b )  DEFORMED STATE - NO CONTROL SYSTEM 
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( C )  DEFORMED STATE - WITH CONTROL SYSTEM 

Fig. 1 Free Beam with End Thrust 
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The methods of solution of such a system are well known and quite simple. 
In the case T1 f 0 , it is necessary to solve a system of linear ordinary 
differential equations with periodically varying coefficients. 

Several methods have been developed for solving such a system of 
equations. For the purpose of this investigation, however, we develop a new 
method for predicting the stability of such a system of equations, which is 
analogous to the method of solution of Hill's determinant as described by 
Whittaker and Watson (Ref. 1). But, whereas the method of Hill is valid for 
only a single differential equation, the method developed here is applicable 
to a system of differential equations with periodic coefficients. 

1.2.1 Beam With Thrust Of Constant Magnitude 

In the case of the beam with constant thrust To , the stability of the 
system is determined by observing the trend of the beam's natural frequencies 
as increasingly larger values of T are  considered, It is shown in Section 3 
that unstable modes exist either when one of the frequencies is reduced to zero 
or when two of the frequencies become equal. 

0 

The Euler buckling problem. The classical Euler problem of the buckling of 
a uniform, pin-ended beam under the action of axial end forces (Fig. 2) is 
an example where the fundamental frequency approaches zero with increasing 
load. The critical load is 

Y 

= *'E1 TE - 
1 2  

where E1 is the bending stiffness of the beam and C its length. The force 

TE , 
the buckling loads for identical beams with different end conditions. Note 
that an alternate method of analysis - the method which Euler actually used - 

is to determine, by statics, the magnitude of the load at which a buckled 
equilibrium shape is possible. 

commonly known as the Euler load, forms a basis for comparison of 
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Fig. 2 Pin-Ended Beam under Axial Load 

Beck's problem. 

result of frequency coalescence is a problem considered by 1\11. Beck (Ref. 2). 

Beck investigated the stability of a uniform cantilever beam acted upon at its 
free end by a nonconservative compressive force. The magnitude of the force 
was assumed to be constant; its line of action, however, was assumed to coin- 
cide with the tangent to the bending-deflection curve, as shown in Fig. 3. 

Beck showed that for a sufficiently large thrust magnitude, an oscillatory 
instability develops, which is characterized by the coalescence of the two 
lowest bending frequencies (see Fig. 3). 

An example of a system in which instability occurs as a 

2 

which may be compared directly with the Euler buckling load TE or, more ap- 
propriately, with the critical load Tc = 7 T E  for a cantilever beam in which 
the load remains parallel to the undeflected axis of the beam. 

Beck found that the critical thrust magnitude occurs when T = 20.05 EI/L , 

1 

Ziegler points out (Ref. 3) that the only systems known in which instabilities 
occur as a result of frequency coalescence are those containing nonconservative 
forces. He also notes that instabilities of this type can onlybe determined by use of 
the kinetic method of analysis, that is, by analysis of the equations of motion. 

Free-free beam. For a constant thrust magnitude To acting on the free-free 
beam, it is found that if a directional control system is not used, the first instability 

occurs when the two lowest bending frequencies coalesce at a thrust magnitude 
To = 109.9 - . It is recognized that for all values of To , two zero-frequency 
modes exist for this case which are unstable a priori. However, since these 
modes involve no bending, structural failure does not occur unless the stress 
due to axial force is sufficiently large. Assuming that this is not the case, 
we are justified in considering To = 109.9 12 to be the critical thrust  mag- 

E1 
&2 

E1 

nitude. 5 



EULER PROBLEM ( FOR REFERENCE) 

TE = r 2 E I  / I 2  = EULER LOAD FOR PIN-ENDED BEAM 

T, = I /4 TE =CRITICAL LOAD FOR 

Tc - CANTILEVER BEAM WITH 
CONSTANT DIRECTION LOAD 

BECK'S PROBLEM 

f (1) = j th BENDING FREQUENCY OF LOADED 
BEAM 

f l  = FUNDAMENTAL BENDING 
FREQUENCY OF UNLOADED BEAM 

r' COALESCENCE POINT - .I 

i 
I TC 

I 
I TE 

I I I I I I 
5 IO 15 20 

TL2/ E1  

Fig. 3 Variation of Frequency with Thrust Magnitude for Cantilever Beam 
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When a directional control system is introduced: the critical thrust mag- 

nitude is found to be considerably lower. For convenience a simple control 

system is assumed which produces the gimbal angle 8 = Ke 'kc (see Fig. l), 
where Ke is a constant. (That is, gimbal servo dynamics are not included 
in this study.) Specifically, it is found that, regardless of the magnitude of 
Ke and xG , the system is unstable for values of To greater than 

E1 To = 25.67 1x . This critical load was predicted by Silverberg (Ref. 4) for a 
uniform free-free beam accelerated by a thrust which is always constrained to 
move parallel to a fixed line. The analysis which we present shows such a 
critical thrust magnitude to apply also in the case of the beam where the control 
system has arbitrary values of Ke (positive) and xG . 

1.2.2 Beam With Thrust Of Periodically Varying Magnitude 

When the thrust is considered to have a time-varying component, that is, 

TI f 0 , it is necessary to consider the longitudinal response of the beam to 
this component. If the frequency of this variation is small compared to the 
fundamental frequency of longitudinal vibrations of the beam, the axial acceler- 
ation is approximately the same everywhere on the beam and is therefore equal 

in magnitude to the ratio of the instantaneous thrust force to the total mass of 
the beam. 

On the other hand, when the frequency of the thrust variation is not small  

compared to the fundamental frequency of longitudinal vibrations, such an 
approximation is no longer valid. We show in this case that the variations 
along the beam in the axial force due to the periodically varying thrust may 
have a serious effect on the stability of lateral motion of the beam. 

If the lateral displacement of the beam is represented as a series of known 
functions multiplied by unknown time-varying coefficients, application of the 
Galerkin averaging process to the beam-bending equation leads to a set of 

linear, second-order differential equations with periodic coefficients. The 

form of the equations is: 
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where 

y is a constant equal to the ratio of the varying thrust amplitude T1 to the 

constant thrust amplitude To Pjk] and [Gjk] are square matrices of constants 
[qk] is a column matrix of generalized coordinates 

52 is a nondimensional frequency constant 
T is the nondimensional time variable 
A considerable amount of work has been done in recent years on systems 

of equations of the type given in Eq. (1.2). E. Mettler (Ref. 5) has developed 
a perturbation method for obtaining the solutions to equations of this type. 
C. S. Hsu (Ref. 6) considers systems governed by equations of this type with 
the restriction that the matrices [F] and [GI are both diagonalized by the 
same transformation 

- 

where [TI is a square matrix and [A& and [Ah are diagonal matrices. 
This is a simplification which does not exist for the problem being considered 
in this work. A method of successive approximations, valid for y small, which 
will handle problems of this type has been developed by L. Cesari (Ref. 7). 

Additional relevant papers are cited by Cesari in Ref. 7. Chetayev (Ref. 8) 

describes a method for determining the stability of linear differential equations 
with periodic coefficients which requires numerical integration of the differential 
equations (with certain prescribed initial conditions) and subsequent computation 
of the eigenvalues of a matrix formed from the integrated solutions. Chetayev 
describes the methods used by Picard and Lyapunov to perform the required 
integrations. 

This thesis develops a new method for determining the stability of a beam 
subjected to an end thrust of periodically varying magnitude. The results 
obtained with this method corroborate the discovery of Mettler that for small 

8 



. 
. 'Y the most critical conditions exist when the frequency of the varying thrust 

is in the vicinity of 

0 Twice one of the natural frequencies 
0 The sum or difference of two of these frequencies. 

In addition to these frequencies, however, it is found that for the system being 
investigated here, instabilities may also result when the frequency of the varying 
thrust is in the vicinity of one of the longitudinal frequencies of the beam. 

1.3 SPECIFIC CONTRIBUTIONS OF THESIS 

The major contributions of this thesis are as follows: 

0 The critical thrust magnitude is determined for the uniform free-free 
beam with a constant end thrust whose direction remains tangent to the 
deflection curve of the beam. Higher modes of instability are also defined 
f o r  such a system. 
The stability d the same beam is investigated with a directional control 
system. It is shown that the critical thrust magnitude cannot exceed 
T = 25.67- 

Ke (excluding the case Ke = 0 ) and of the location of the position gyro. 
The stability of a uniform free-free beam having periodic variations in its 
magnitude is investigated. The case of a tangential end thrust and the case 
of a thrust with controlled rotation are both considered. It is shown #at 
the periodic fluctuations of the thrust magnitude may cause the bending 
vibrations of the beam to become unstable. The critical regions for small 

y are shown to be in the vicinity of 52 = (2w.)/n and 52 = (w. f %)/n , 
J J 

where w. and + are  bending frequencies of the beam loaded with a 
thrustof constantmagnitude To , and n is aninteger. Additionally, it 
is shown that the longitudinal response to the varying thrust may have a 

serious effect on the stability of bending vibrations of the beam. 
0 A new method of determining the stability of equations of the type given in 

Eq. (1.2) is developed. The method is an extension of the method used by 
Hill to solve the Hill (or Mathieu) equation and involves the formulation and 

evaluation of an infinite determinant. 
methods of solution, the method is not restricted to small values of y . 

0 

regardless of themagnitude of the control constant L2 ' 

0 

J 

In contrast with most of the known 
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Section 2 

ANALYTICAL DEVELOPMENT 

c 

2.1 DERIVATION OF EQUATIONS OF MOTION FOR CONTROLLED FREE- 
FREE BEAM UNDER THRUST OF PERIODICALLY VARYING MAGNITUDE 

The beam whose stability is to be investigated is shown in Fig. 4. Displace- 

ments of the particles of the beam arc! defined relative to a Lagrangiancoordinate 

system, 
unstrained state. It is assumed that in this reference state the beam is fixed 
relative to a Newtonian frame of reference and that its axis coincides with a 
fixed reference line from which lateral motion d the beam will be measured 
during the actual motion of the beam. 

tion parallel to this reference line are denoted by u ( x , t ) , the positive 
direction being chosen to coincide with the positive x direction. Similarly, the 
displacements perpendicular to the reference line are denoted by y ( x , t ) , 
the positive direction being as indicated in the figure. 

F'ig. 4(a) , in which x defines a location on the beam in some initial 

Displacements of points lying on the middle surface of the beam in a direc- 

The beam is assumed to have uniform mass and stiffness distribution, and 
it is assumed that bending of the beam may be adequately described with simple 
beam theory, in which shear and rotary inertia effects are considered negligible. 

We consider the element of the beam between x - dx/2 and x + dx/2 . 
The deformed element is shown in Fig. 4@). The location of the center of the 
element in this state is ( x + u , y ) , and the length of the element is 
dx ( 1 + &/8x ) , as indicated in the figure. Lateral forces acting on the beam 
are represented by m L d x  (the inertia force) and pdx (forces other than 
the inertia force). The stress resultants are represented by force components 
parallel and perpendicular to the reference line and by moments acting as 
shown in the figure. 

a2 
at2 

Before we proceed to tne equations of equilibrium of the beam element 
shown in Fig. 4@), we note that the rotation of the axis of the element relative 

to the reference line is given by J)  = tan-' E/+ + S1-J . n u s  the gimbal 

11 



( Q 1 DISPLACEMENTS IN LAGRANGIAN COORDE(NE SYSTEM 

( b)  FORCES ON BEAM ELEMENTS 

Fig. 4 Controlled Beam with Thrust of Periodically Varying Magnitude 

12 



. 
angle 8 , shown in Fig. 4(a), may be written as 

au where ( xe t ) and ( xG,t ) are the values of these derivatives at 

x = x c .  

 he q~ations of equilibrium for the beam element shown in Fig. 4@) are 

a k I + , g - v  ax (it+$) = 0 

In addition to the above equations, the following equations may be obtained 
if a linear stress-strain relationship is assumed: 

M = El 

P + V g  = AE [l - d-1 (2.6) 

where E1 is the bending stiffness and A the cross-sectional area of the beam. 
are small in comparison to unity. Noting also that We assume that ax and au ax 

13 



V is of first order small compared to P , we obtain the following approximate 
equations : 

- a v + m - + p  a2Y = o 
ax at2 

-+ a M  Pi&-v a = 0 
ax 

M = E I -  a 2 Y  
2 ax 

au P = - A E K  

Eliminating P from Eqs. (2. 2a) and (2. 6a),we obtain the wave equation: 

2 2 
a u  m a u  

2 AE at2 ax 
- -  - -- 

(2.2a) 

(2.3a) 

(2.4a) 

(2.5a) 

(2.6a) 

(2.7) 

The force P at the end x = 0 is zero. If we assume that the gimbal 
angle 8 and the slope at the end x = 1 are small, then the magnitude of P 

at that end is approximately P = To + TI cos at . Thus, we require the 
following boundary conditions on u to be satisfied: 

au 
ax At x = 0 :  - =  0 

au - - - ( l + y c o s a t )  TO 
AE At x = C :  ax- 

T1 
TO 

where y =-. 

14 
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1 -  

It may be verified by direct substitution that the following particular solu- 
tion satisfies Eqs. (2.7) and (2.8): 

From Eqs. (2. Sa) and (2.9) it is found that the distribution of the force P 

is givexi by 

where 5 isthenondimensional 

@ (  5 

variable 5 = 9 ,  and 

(2.10) 

(2.11) 

The formula f a r  the fundamental frequency of longitudinal vibrations of a 
uniform free-free beam is (Ref. 9) 

Thus, Eq. (2.11) may be written as 

(2.12) 

Note that if the ratio of the forcing frequency !2 to the fundamental longi- 

tu- frequency q, is small, then ip ( 5 )--5 . h this case, the axid force 

distribution is linear with 5 , indicating, as may be seen from Eq. (2.2), 

15 



that the longitudinal acceleration is the same for all particles of the beam. If, 
on the other hand, the forcing frequency D is in the neighborhood of % (or 
an integral multiple of ), longitudinal resonance occurs, and P assumes 
very large values for intermediate values of t . 

equation with axial forces: 
Combining Eqs. (2.3a) , (2.4a), and (2.5a), we obtain the beam-vibration 

(2.14) 

It is convenient to consider the thrust force in terms of two components - 
one in the direction of the tangent to the deflection curve with the approximate 
magnitude To + TI cos SZt , and the other perpendicular to this tangent with 
the approximate magnitude ( To + T1 cos S2t ) 8 . We see from Eq. (2.1) 

that on the basis of the assumption that 2 and ax are both small, 8 may 
be replaced by 8 = KO 
considered as  an external force applied to the beam to be included in Eq. (2.14) as p. 

a au 

( xG t ) . The component (To + T1 cos Slt ) 8 is 

If we substitute Eq. (2.10) into Eq. (2.14), express p in terms of the 

9 

aforementioned component of the thrust force, and introduce nondimensional 
variables 6 = x/B and T= wlt , we obtain 

md4 and 6 ( 6 ) is the Dirac delta - T0b2 n 4  
, A n =  w n E I ,  where To = - E1 S n = -  

(-4 a 
function. 

Having considered the component (To + T1 cos at ) 8 of the thrust force 
in the differential equation, we need consider only the tangential component of 
the thrust force in establishing the boundary conditions. From Eqs. (2.4a) and 

16 



. 
* (2.4b) we see that the boundary caditions at the two ends are 

(2.16) 

~ o t e  that the on~y restriction placed on the displacements is that 
should both remain small in comparison to unity. obviously, the dieplace- ax 

ments u (x , t) themselves become large. There is no reason why y (x , t) 
should not be allowed to become large also, provided the slope &(x , t) 
remains small. In fact, we note that there is actually no method of controlling 
the lateral displacement, and that a constant lateral velocity, as well as a con- 
stant lateral displacement is possible. This permits arbitrarily large values 

of y (x , t) to result. 

a 

2.2 APPLICATION OF GALERKIN METHOD TO OBTAIN SYSTEM OF 
ORDINARY DIFFERENTIAL EQUATIONS WITH PERIODICALLY VARYING 
COEFFICIENTS 

Equation (2.15) is a linear partial differential equation in tbpl dependent 
variable y and the independent variables 5 and T . A series solution may 
be obtained by expressing the deflection (assuming small slopes) as 

(2.17) 

where qAm and %(T) arerigid-bodycoordinatesand %(T) isthecoordinate 

associated with the function 9 (6) . This function is taken (for convenience) 
to be the nth vibration mode shape of the free-free beam with no thrust. 
Thus, qn([) satisfies the differential equation 

An 

(2.18) 



and the boundary conditions 

(2.19) 

w 
beam. 

being the natural frequency of the nth mode of vibration of the free-free 

Observe that all the boundary conditions of Eq. (2.16) are satisfied by each 
of the functions in Eq. (2.17) . With this condition satisfied, the Galerkin 

method offers a useful means of obtaining an approximation to the solution when 
a finite number of terms in the series is assumed (Refs. 10, 11, 12) . Briefly, 

this method converts Eq. (2.15) into a set of ordinary differential equations. 

n 

The Galerkin procedure is as follows. The expression 

N 
(2.20) 

when substituted into Eq. (2.15) leads inevitably to a certain error .  This e r ror  

is weighted by each of the approximating functions, and its integral over the 
length of the beam is set equal to zero, thereby leading to the following equations: 

(2.21) 
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. 

A s  a result of the equilibrium conditions and the orthogonality properties . 
of the modes of vibration of a uniform free-free beam, we have 

1 1 \ 

and 

1 

(2.22) 

The actual magnitude of @ (5) is arbitrary to a constant factor. We assume 
that this factor is such that 

1 

f @Ed5 = 1 

0 (2.23) 

This assumption of the magnitude of $n is consistent with that of Ref. 13, from 
which the values of qn and An used in this analysis were taken. 

Substituting Eq. (2.20) into F,q. (2.21) and utilizing Eqs. (2.18), (2.20), 
and (2.23), we obtain, after performing the necessary integrations, the 
following system of ordinary differential equations: 

r N - 

N N 1 

n=l n=l 0 
r N 1 

L n = l  J 
( 2.24) 19 



r N 1 

L n = l  J 

L 0 J 

N 1 N 1 

n = l .  0 n = l  0 

L n= 1 J 

k = 1 , 2 ,... N 

(2.24) 

d 
dT ' 

and - indicates - - I d In the above equations Q = 2, indicates - 
"L d5 ' 

The first two equations may be combined in such a way as to eliminate qA . 
Doing this, and expressing the resulting equations in matrix form, we obtain 

where 

and [Fjk] and pjk] are square matrices of order N + 1 . The elements of 

(2.25) 

20 



Fjk] and kjk] are defined ae follows: 
- 

j = 1 ,  2 ,... N ;  k = 1 ,  2 ,... N 

j = l , Z ,  ... N ; k = 1 , 2 ,  ... N 

k = 1 , 2 ,... N 

GN+l, N+1 
1 

where 6 is the Kronecker delta 6 = 1 if j = k , Gjk = 0 if j # k). jk ( jk 
Equation (2.25) constitutes a set of ordinary, linear differential equations 

having, in general, periodically varying coefficients. The stability of the 
vibratory motion of the beam is determined by considering the nature of the 
solutions of this set of equations. Special cases are of interest and may be 
investigated by prescribing particular values for the various parameters 
involved. 21 

(2.26) 



Section 3 

STABILITY OF BEAM WITH THRUST OF CONSTANT MAGNITUDE 

7% stability of the beam under a conetant thrust magnitude may be inves- 

tigated by setting y = 0 in Eq. (2.25). In this case, Eq. (2.25) reduces to a 
set of linear, ordinary second-order differential equations with constant coeffi- 

cients; tbus, we have 

with F 
system may be determined by representing [ qk] in the form 

defined in Eq. (2.26). The characteristic modes of motion of such a 
jk 

( w being the frequency with respect to the real-time variable inwhich 3 = - 
t). and [s] is a column m&ix of 0onstant.s. 

algebraic equations. To obtain nontrivial solutions for these equations, we 
must set the determinant of coefficients equal to zero; that is, 

W 

w 1  

Substituting Eq. (3.2) into (3. l), we obtain a set of linear, homogeneous, 

where [I] is the identity matrix. 
The characteristic equation, obtained by expanding the determinant repre- 

sented in Eq. (3.3) and by setting it equal to zero, is a polynomial in w2. For 
-2 the beam to be stable in every mode, it is necessary that the values of w ob- 

tained as roots of the characteristic equation be real and positive. A negative 
-2 w indicates the existence of a pair of nonosciliatory solutions; one of these 

solutions increases (the other solution decreases) exponentially with time. A 

complex G2 represents an oscillation whose peak amplitudes increase ex- 
ponentially with time. 

23 



Some insight into the natureof the transition from stable to unstable modes 

is gained by consideration of the root locus plot for i w  as shown in Fig. 5.  The 
points on the imaginary axis represent the frequencies for zero thrust. These 
points are situated symmetrically with respect to the real axis. (Corresponding 
points on the positive and negative imaginary axis represent the same mode of 
oscillation.) A s  T is increased, one of two events may occur to create unstable 
modes : 

0 The points nearest the real axis on the positive and negative 
imaginary axis may move toward each other and meet at the origin 
(as in Fig. 5a), after which one root moves onto the positive real 
axis and the other onto the negative real axis. 

0 Two of the roots on the positive imaginary axis (and simultaneously 
the two corresponding roots on the negative imaginary axis) may 
move toward each other and meet at some point (as in Fig. 5b), 
after which one pair of the roots moves into the right half-plane 
and the other into the left half-plane. 

3.1 STABTLITY WITHOUT CONTROL SYSTEM ( K O  = 0) 

If KO = 0 , we have the case of a beam under tangential end thrust. It is 
observed by a detailed examination of Eq. (2.24) (it is also apparent from physical 
considerations) that, if y and KO are both zero, two zero-frequency modes 
exist for all values of To. The characteristic motion associated with one of 

these zero-frequency modes is lateral translation of the beam with no accompanying 
rotation or  bending. The other mode involves rotation of the beam at a constant 
angular velocity (or merely a constant angular displacement) accompanied by 
translation; but again no bending is involved. These modes are, of course, un- 
stable, so that the system is unstable a priori, no matter whether the vibra- 
tory modes are stable or not. However, since no bending of the beam is 
involved, structural failure does not occur as a result of motion in these 
modes. Thus, defining a critical thrust magnitude as  the magnitude at which 
one of the vibratory modes has impending instability is justified. 

There exists, however, one additional problem. If there is motion in the 
zero-frequency rotational mode, large slopes - a Y  will occur. The appearance 

ax  
of these large slopes violates one of the assumptions on which the derivation of 
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fie equations of motion was based. Thus, to get meaningful solutions for this 
case, we may impose the restriction that there be no motion in the zero- 

frequency rotational mode. An alternative point of view (and a more physi- 
cally satisfying one) is to assume that if motion does exist in this mode, the 

reference line from which the displacements y(x , t) are measured rotates with 
the same angular velocity as that of the rigid-body rotation in the zero-frequency 
rotational mode. Thus the original assumption of small 
derivation of the equations of motion remains unchanged if the angular velocity 
of rotation is small enough that the centrifugal and Coriolis forces associated 
with the rotating coordinate system may be neglected. 

is valid, and the ax 

The equations for the case KO = 0 were programmed for solution on the 

IBM 7090 computer. Solutions for the characteristic frequencies were obtained 
for progressively larger values of To until an unstable root was obtained. The 
analysis was repeated for several different numbers of bending degrees of free- 
dom, (i. e. , several different values of N) to determine how many modes are 
necessary to represent adequately the frequency trend. 

3.1.1 The Magnitude of Critical Thrust 

If we use a value of N = 1 , the fundamental (and only) frequency reduces 
to zero at a value of To = 81.4. For N = 2 and higher, the first unstable root 
occurs as  a result of the coalescence of the first and second characteristic fre- 
quencies. 

The variation of these frequencies as To is increased is shown in Fig. 6 

for values of N equal to 1, 2, 3, 4, and 5. The difference between the curves 
for N > 2 cannot be detected when the curves are plotted to the scale shown in 

the figure. 

which differs from the value found for N = 4 by less than 0.1%. Thus, within 

0.1% accuracy, we may assume the critical load to be equal to 109.9. This value 
is compared in Fig. 6 with the Euler buckling load TE = T EI/L 
that the critical load for the problem investigated here is approximately eleven 
times the Euler buckling load. 

The critical value of To for N = 5 was found to be (Tb),, = 109.9 , 

2 2 . It is seen 
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3. 1. 2 Instabilities at Supercritical Thrust Magnitudes 

Assuming To > ( To) CR ,we investigated the stability of the beam by solv- 

ing for the characteristic frequencies and noting their trend. Eight bending modes 
were used in the analysis. Figure 7 shows that coalescence of the frequencies 

corresponding to the third and fourth bending modes occurs for To = 405, while 

the frequencies corresponding to the next two higher modes coalesce for To = 870. 

Based on this trend, it seems reasonable to expect all the higher modes of insta- 
bility to be created by pairwise coalescence of the characteristic frequencies of 
the system. 

3.1.3 Comparison with Budiansky's Results 

The equations obtained by setting y and Kg equal to zero in Eqs. (2.25) and 

(2.26) are  equivalent to those derived by Budiansky (Ref. 14) using Lagrange's 
equations. Budiansky used a one-function approximation to predict that the funda- 
mental frequency would be reduced to zero at a value of To = 81.6. (See curve for 
N = 1 in Fig. 6. ) Rather than improve the accuracy of the computation by consider- 
ing more bending degrees of freedom, he chose to represent the frequency in the 
form of the series w 
nique to determine the values of the constants po , p1 , p2 , . . . . 
first three terms of the series, Budiansky predicted that the fundamental frequency 
would be reduced to zero at a value of To = 82.7 e concluding that the consideration 
of a larger number of terms would cause little additional change in this value. 

Apart from the fact that numerical errors were discovered in Budiansky's com- 
putation of (TdCR , it is doubtful that the series would converge at the coalescence 
point; it would probably converge very slowly for values of To slightly less than 

(TO)CR . The reason for this presumption is that it would be impossible to repre- 

sent the variation of w as shown in Fig. 6 by a power series in To , since such 

a series could not be made to conform to a curve having a vertical tangency such as 
exists at the coalescence point. 

= po + plT0 + p2T: + . . . and use a perturbation tech- 
(1) 

Using the 

(1) 

3.2 STABILITY WITH CONTROL SYSTEM (KO > 0) 

Using various values of the parameters KO and 6 of Eqs. (2.26), we obtained 
solutions for the characteristic frequencies from the 7090 computer. Recall that when 
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Kg = 0 , two zero-frequency modes existed for all values of To . 
% > 0 , we anticipate that in general there exists only one zero-frequency solu- 
tion, namely one that corresponds to the lateral translation of the beam. Rigid- 
body rotation is no longer expected to be a zero-frequency solution because of 
the characteristics of the control system. We may conclude, as in the case with- 
out a control system, that the beam is unstable a priori. However, since no 

bending of the beam is involved, we are  justified in considering, as before, the 
critical thrust magnitude to be that at which one of the vibratory modes has im- 
pending instability. 

In the case 

We computed the frequencies for a range of values of KO and E ,  using two 
bending degrees of freedom in addition to the two rigid-body degrees of freedom. 
In Fig. 8 curves are shown of frequency versus thrust. One frequency curve, not 
evident in the figure, lies along the ;= 0 axis and corresponds to the rigid-body 
translation mode. In addition to the frequencies shown in the figure, a higher fre- 
quency existed in each case, arising from the second bending degree of freedom. 
The use of a larger number of bending degrees of freedom in the analysis would 
introduce even more frequency curves as well as alter slightly the lower-frequency 
curves shown in Fig. 8. Qualitatively, however, these lower frequency curves 
would be expected to have the same general behavior as shown in Fig. 8. It is 

not anticipated, therefore, that the inclusion of a larger number of bending de- 
grees of freedom would effectively alter the stability of the system. 

Note that in curves (a) and (b) of Fig. 8 (corresponding to values of 5 ,  = 0 

and 5 ,  = 0.2) an unstable region occurs for Kg = 1 as a result of frequency 
coalescence. For larger values of kG ( 5 ,  = 0.5 and 6 ,  = 0.8 , for example) 
this region of instability does not occur, at least for the range of values of Q 

considered. Furthermore, from the trend (with KO ) of the upper sets of frequency 
curves in (c) and (d), it does not appear that there is an immediate danger of 
frequency coalescence for values of Ke  > 1.0. However, there is the recognized 
danger that a large value of K e  would cause an early frequency coalescence of 
the modes comprising predominantly fundamental bending and predominantly 
second bending. 

It is clear that the region of instability discussed in the preceding paragraph 
may be eliminated by proper choice of K 

lower-frequency curve becomes zero at the same value of To for all values of 
K e  and 5 ,  . 
occurs. Since no choice of KO and E ,  exists which will eliminate this instability 

and 5 ,  . 

At this point an unstable mode exists in which bending of the beam 

On the other hand, the 8 
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(except K = 0 , which reduces the bending participation to zero), the value of 
the thrust at this crossing point is considered to be the critical thrust magnitude. 
This assumes that the higher-frequency curves not shown in Fig. 8 a re  well- 
behaved up to this point. 

0 

Silverberg (Ref. 4) showed that for a uniform free-free beam with an end 
thrust constrained to move parallel to a fixed line, the magnitude of the thrust at 
which a buckled equilibrium shape becomes possible is determined from the 
equation J 

kind of order 2/3 . 
(2 fro) = 0 , where J 

2/3 8 2/3 
is the Bessel function of the first 

From this equation it is found that 

(To) CR = 25.67 (3.4) 

The general shape of the beam in this buckled position is sketched in Fig. 9. The 
inertia forces shown acting on the beam are in equilibrium with the thrust 

(T 0) CR ' 

c 

Fig. 9 Buckled Equilibrium Shape of Uniform Beam with End Thrust 
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Configurakion A represenis the system audyzed by Siiverbrg. Equilibrium 
is preserved when the system undergoes a simple rotation to produce the con- 
figuration represented by B. It is clear that the amount of rotation required to 
rotate from A to B may be adjusted to satisfy the relationship 6 = KO 'kc , in 

which case configuration B represents a possible zero-frequency configuration 
for the case of the beam with feedback control, 

We conclude, therefore, that a zero-frequency solution will exist for ar- 
bitrary values of K e (nonzero) and tG at a thrust given by Eq. (3.4). The 

discrepancy between the critical thrust a8 givea by tbis equation and the point at 
which the frequency curves cross the W = 0 axis in Fig. 8 is due to the fact that 
only two bending degreeb of freedom were used in calculating the curves of the 

figure. We computed similar curves (not shown) using three bending degrees of 
freedom. These analyses showed the crossing point to be at To = 26.08 , which 
differs from the value given in Eq. (3.4) by approximately 1.5%. 

The discontinuity which exists at KO = 0 is significant. We concluded in 
3.1.1 that for Kg = 0 , the critical thrust magnitude is (TO)CR = 109.9. We 

now see, however, that if KO > 0 , then = 25.67 for every value of 
Kg (except for certain large values, as shown in Fig. 8a and b). Thus, even 
though KO may have an arbitrarily small, positive magnitude, the critical 
thrust remains (To )CR = 25.67 . However, as KO approaches zero, the fre- 
quency curve approaches the iZ = 0 axis. For values of To such that 
0 < To < 25.67 , the curve lies slightly above the axis. For values of To 25.67 
instabilities exist. However, the characteristic motion is such that for a given 
set of initial conditions, the time required for the bending deformations to build 
up to an arbitrarily prescribed amplitude becomes very great- approaching in- 
finity as Kg approaches zero. 

The point (To),, = 25.67 loses its significance completely when KO 
becomes exactly equal to zero. The zero-frequency modes involve no bending, 
so that To may exceed To = 25.67 with no eventual structural failure. Thus, 

our interest shifts in this case to the mode of instability created by the coales- 
cence of frequencies at To = 109.9. 

So far it has been tacitly assumed that KO is either zero or positive. It 
is clear, of course, that for KO < 0 , the (predominantly) rigid-body mode is 
unstable for very small values of To . nus, we restrict our attention to posi- 

tive (or zero) values of % . 
33 



3.3 APPLICATION OF RESULTS TO MISSILE STABILITY 

Virtually all current missiles have some form of directional control system. 
Thus for missile applications,the value 'i; = 25.67 is more significant as a 0 
critical thrust than is the value at which the two lowest bending frequencies coalesce. 
(Use of angular-rate feedback control would not affect this critical thrust, since 
the rotational velocity is zero in the displaced equilibrium position at the criti- 
cal thrust magnitude. ) 

We may attempt to compare the critical thrust for a uniform beam with the 
thrust on a missile in free flight. However, since most missiles have highly 
nonuniform characteristics, such a comparison is at best only an approximation. 

expression for A in Eq. (2. la), we obtain 
From the equation T = mla  (where a is the longitudinal acceleration) and from the 

1 

Then, assuming To = 25.67 and introducing g , the acceleration due to 
gravity at the earth's surface, as a nondimensionalizing factor, we obtain 

2 25.67 w1 a 
g 500.6 g 

- - -  (3.6) 

where the value of A = 500.6 has been used (Ref. 13). 1 
If we assume that Eq. (3.6) may be applied in an approximate way to a 

nonuniform missile, where w1 is the fundamental frequency in bending (rad/sec) 

and I is the length of the missile, we may obtain an estimate of the acceleration 
required to cause the missile to become unstable. 

missile), and using g = 386 in. /sec2 , we obtain a/g = 23.6 , which is an 
acceleration four to five times greater than that experienced by modern missiles. 
Thus, it is not anticipated than an instability of this type will be experienced by 
current missiles. However, it is conceivable that future space vehicles, perhaps 
assembled in space with extremely flexible structures, will be faced with such 

Assuming w = 2.rr rad/sec , and 1 = 4,500 in. (typical values for a large 1 

problems. 34 
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Section 4 

METHOD OF SOLUTION OF SYSTEM OF DIFFERENTIAL 
EQUATIONS WITH PERIODIC COEFFICIENTS 

We now consider the most general case - that of a directionally controlled 
beam which has longitudinal compliance and is subjected to a thrust whose mag- 
nitude varies periodically in the form To + TI cos $2 t . The applicable equa- 

tions for this case were derived in Section 2 and are given as' Eq. (2.25). 

4 . 1  FORM OF THE SOLUTION 

It is known (Ref. 5) that solutions to equations of this type may be expressed 
in the form 

where (Y is a constant and [ek] is a column matrix in which each element has 
a periodic variation of period 27rB .  his is the period of variation of the 
magnitude of the periodically varying thrust component in terms of the non- 
dimensional time variable T . 

Expanding [ \kk] in a complex Fourier series 

we may write (4.1) as  follows: 
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th where [%] (m) is a column matrix of constants, the kth element in the m 
matrix being denoted by \ (m) 

4.2 FORMULATION OF INFINITE DETERMINANT 

If we now substitute the series solution for [qk] as given in Eq. (4.3) 
into Eq. (2.25) and cancel the common factor e q  ia&, we obtain 

- 
1 iaT+ e-iCir in which cos& has - been expressed in the form C O S f i 7  = - 2 (e 1 .  

Note that i f  (e i'T + e-iiTT) is combined with e im'T, every term in Eq. (4.4) 

has a time-varying factor e ik" , k an integer. Equation (4.4) can be satisfied 

for all values of T only if the collected coefficients of like eqonentials are  
individually equal to zero. Thus, it is required that the following equations hold: 

(m-l) + [\ym+l) 1 = 0 (4.5) + %  [Gjk] { [%I 
m =  . . . -  3 ,  -2, -1, 0 ,  1 ,  2 , 3  ,... 

Equation (4.5) represents a set of linear, homogeneous, algebraic equations 

In order that such a system of equations have nontrivial solutions, 

(m) intheunknowns ck 
3 . . . . 
the determinant of coefficients must be equal to zero. Thus, only the values of 
a) which satisfy this requirement are  permitted in the solutions expressed in 

Eq. (4.1). 

, k = 1, 2, ... , N + 1 ,  m = . . . -  3 ,  -2, -1, 0 ,  1, 2 ,  
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To determine such values of LY the equations represented by Eq. (4.5) must 
be divided by the proper factors to insure convergence of the determinsnt. 
Dividing the k* equation of the ,th set of Eq. (4.5) by e [-(a + m)2 + 91 
and combining all of the sets of equations into a single matrix equation, we 

obtain 

. . .  
D-2.-2 

Y . . -  
2 D-1.-2 

. . .  

. . .  

. .  . 

- 

. . 
7 
2 D-2. -1 

D-1. -1 

Y - D  2 0,-1 

0 

0 

0 

Y z D-l. 0 

Do. 0 

7 - D  2 l , o  

0 

8 

0 

Y - D  
2 0.1 

D1. 1 

Y - D  
2 2 . 1  

0 

. 
0 * -  

0 - .  

ZYD1,2* - 

D2.2' ' 

= 0 (4.6) 
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j , k  
where D 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

Dm,m = I 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

Dm, m*tl = I  

are  square arrays of elements having the following values: 

2 -  - (a + m) 

- (a + m)2 + w 

+ Fll 
A2 
1 

F2, 
- (a + m)2 + A2 w2 

- 
*N+l, 1 - (a + m)2 + A &+I 

- 
G1l - (a+ m)2 + A2 w 

1 

- I 
I 
I 
I 
I 

'1. N+l . . .  12 
A2 - (a+ m)2 + A2 w 1 - (a + ml2 + w1 

I 
'2, N+l I 

- (a + ml2 + F% 

- (a + m)2 + w2 
. . .  

- (a + mI2 + %: I (4.7) A2 

I 

G1. N+l 
- (a + m)2 + w 

. . .  
A2 
1 

12 
A2 - (a + m)2 + w 1 - 

'2. N+2 . . .  
A2 - (a + m12 + w2 - (a + m)2 + A 2  w2 

G21 E22 

- (cy + m)2 + w2 

'N+l. 1 
- (cy + m)2 + A2 %+1 

- 
G~+i. N+I 'N+1,2 ... 

2 + A2 A2 
%+ 1 - (a + m) 

I 
I 
I 
I 
I (4.8) 
I 
I 
I 
I 
I 
1 
I 

-2 In the above expressions, 
characteristic values of the matrix [ Fjk] : that is, they are the solutions to 

= F /E2 , Tk = Gjk/!J , and jk jk- 
$ are the  

the determinant 

A2 
'1, N+l 

F21 F 2 2 - w  . . . F2,N+1 

. . .  P,, - w Fl2 - 62 - 

. 
- E12 - - 

FN+l, 1 FN+l, 2 F ~ + i , ~ + i  - 

. 

= o  (4.9) 

A 

Fjk 1 /E, where W are the characteristic values of Thus, qc = ufi) 

The values of E 
quencies for the beam with constant thrust magnitude To . 

(k) 
therefore, represent the nondimensional vibration fre- 

(k) ' 
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We define the determinant of coefficients of Eq. (4.6) as 

.. . 
D-2, -2 

- . *TD-1,-2 
Y 

0 

.. . 0 

... 0 

.. . 

Y v D-2, -1 

D-l. -1 

r - D  2 0,-1 

0 

0 

0 . . .  0 0 

- D  Y 0 o . . .  

Y 0 . . .  

-D Y . e -  

DL 1 2 1.2 

2 -l,o 

0 P o ,  1 

. .. 
L D  2 2.1 D2. 2 0 

Inspection of D indicates that m, m 

(4.10) 

(4.11) 

for all Q except when a is such that - (a + m)L + 4 = 0 for some m and 

some k , in which case I D I is undefined. 
We know (Ref. 1) that an infinite determinant converges if the product of 

the diagonal elements and the sum of the nondiagonal elements each converge 
absolutely. The product of the diagonal elements of A(@ is given by 

m, m 

(4.12) 1 (a, + n)2 + F 

- (a + nl2 + d N+l 
N+1, N+l 

which may be written as 
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Each of the infinite products in the brackets of Eq. (4. 13) can be shown to be 
convergent (except when some factor - (a+ n) + if is zero) from the theorem 
(Ref. 1) which states that the absolute convergence of the infinite sum 

00 i = l  guarantees the absolute convergenceof theinfinite product II ( 1  + a. ) . i= 1 1 

2 
k 00 

ai 

The sum of the nondiagonal elements of A(@ is 

(4. 14) 
j #k 

2 

is zero) and 
Each of the infinite sums in Eq. (4.14) behaves asymptotically like l /n , in- 

suring its convergence (except when some factor - (a!+ n)2 + 
consequently the convergence of S . 

k 

Thus, A(@ converges for all values of a except those for which some 
2 A 2  factor - (a+ n) + uk is zero. 

Inspection of Eq. (4. 10) with the definitions of Eqs. (4.7) and (4.8) shows 
that A(@ is an even, periodic function of a! with period 1 and that it is an 
analytic function of a (Ref. 1) except when a = n f 4 for some integer n 
and frequency parameter w 

This follows from the fact that, as 0-i.o , all elements in the arrays Dn,nfl 
approach zero, so that A ( 4  approaches the product of the determinants 

A Additionally, we observe that lim A(@ = 1 , 
k '  Ql--lCe 

(4.15) 

However, since each of the determinants I D ~ ,  I is exactly equal to unity, it 
follows that 

lim A(@ = 1 
a - c i w  

(4.16) 
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4.3 DERIVATION OF CHARACTERISTIC EQUATION 

We now choose constants K1 , K2 , . . . , s+l such that the function 
H(@ , defihedby 

%+1 
+... + cos2"G+1 - cos27rCY (4.17) 

has no poles at the points Gl , G2 , . . . , jN+l . 
when 2. f 9 = n for some j and k (n an integer). We therefore exclude 
this possibility in the following analysis. 

has no poles at any of the points CY = n f Sk . 
analytic function with no poles. Thus, the postulates of Liowille's theorem 
(Ref. 1) are satisfied, and we conclude that H ( 4  is a constant. We evaluate 
this constant by allowing CY to approach ibo  , in which case we see that 
H(aj = lim A(@ = 1 . Thus, 

Such constants exist except 

J 

Observe that H(c$ is a periodic function with period 1 . Therefore H(@ 

It follows that H(@ is an 

Mi 00 

K1 - K2 
= - cos2nij - cos27rCY cos2ra2 - cos2nCY 1 

+1 
(4.18) - ... - 

cos 2 "c;k+l - cos 27rCY 

The constants K1 , K2 , .. . , are evaluated by allowing CY to 
A A A approach ul , G2 , . . . , %+1 , respectively. Letting CY = w. + E ,  we find 

that 
J 

(4.19) 
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We define a new determinant A.(@ , which is obtained by removing the factor 
1/(-a2 + &2) from A(@ . J 

Thus, 
J 

A . ( q  = ( -a2 + $;)A(@ 
J (4.20) 

and Eq. (4. 19) becomes 

. 

(4. 21) 

The characteristic equation is obtained by setting A(@ equal to zero in 
Eq. (4.18). If we make the abbreviations cos 2 “wi = Si and cos 2 TQ = z , 
the characteristic equation becomes 

A 

= o  - K2 - - KN+ 1 ... - z  
K1 1 -  

6 , - 2  6 , - z  ‘N+ 1 
(4.22) 

Excluding the possibility of repeated roots, we note that there exist N + 1 
solutions to Eq. (4.22), from which the corresponding values of Q may be 
determined. 

4 . 4  STABILITY OF SYSTEM AS INDICATED BY THE NATURE OF THE 
SOLUTIONS 

From the solutions z = cos 2 TITQ! of the characteristic equation, the corre- 
sponding values of Q are  readily obtained. It may be shown (Ref. 15) that 

(4.23) 

Mettler has 
imaginary part, 
part. It follows 

shown @ef. 5) that if a solution CY exists that has a positive 
there corresponds a solution that has a negative imaginary 
that unless Q is real, an unstable solution exists. Therefore, 

in order that the system be stable, it is necessary that z be both real and 
limited to the range -1 5 z I 1 . 
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. 
&l&&.r ci;isaci& fie meas of --ai@ in terms a- Type-1 m d  

Type-2 region. The boundaries of the Type-1 instability regions are character- 
ized by values of z = *l . On the boundaries of the Type-2 instability regions 
incipient complex solutions z exist which are characterized by double roots. 
Furthermore, Mettler shows that, as y approaches zero, the Type-1 instability 
regions impinge upon the loci 2 4  = m (m a positive integer), whereas the 
Type-2 instability regions impinge upon 
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Section 5 

STABILITY OF BEAM WITH PERIODICALLY VARYING THRUST 
MAGNITUDE - NUMERICAL RESULTS 

An IBM 7090 program was developed to determine the stability characteristics 

of a beam under an end thrust whose direction may be controlled and whose mag- 
nitude has a periodically varying component. 

In this program, the most difficult task was evaluating the determillants 

A. (2.) in Eq. (4.21). We assume that the index m in this determinant ranges 
3 1  

from -M to M ; however, we cannot be certain of adequate convergence unless 
M is large enough that 

A2 
( & j + M ) 2  > w max 

is the largest of the hk . When Eq. (5.1) holds, we may be where wmax 
assu~ed that all the factors - ( Q ~  + m)2 + h i  , with Iml > M , will grow in- 

creasingly larger in absolute d u e  as Im1 is increased, in which case the 
absolute values of the elements in the arrays Dm, ~1 rapidly grow smaller. 

= 1 for all m , it is expected that convergence will be Thus, since 
rapid as larger determinants are  considered, especially if y is small. 

A 

IDrn,ml 

From Eq. (5.1) we see that if we are  to evaluate A. (2.) accurately, M 

Since 0. = w . /a, it follows 
A h  J 1 

must be large enough that M > w. + umax . 
that, as 
comes larger, making the computations increasingly difficult. 

to be the first integer larger than 8. + amax. 
the solutions obtained for this approximation were very accurate, since increasing 
M produced virtually no change in the values obtained for z . 

3 I 6) 
becomes smaller, the size of the determinants to be evaluated be- 

The value of M used in the computation of A. (G.) was generally chosen 
3 J  

We found, in most cases, that 
J 

A check on the method of analysis and the formulation of the computer pro- 
gram was obtained by actually evaluating A(a) (using a particular set of param- 
eters) for several real values of (Y and noting at what value A(a)  changes 
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signs. It was found that the values of (Y determined in this way check very closely 
with the values obtained with the method described in Section 4. 

5 . 1  INTERPRETATION OF COMPUTER RESULTS 

The computer program w a s  set up to evaluate the necessary determinants 
and solve for the values of z satisfying Eq. (4.22).  For a given set of data, the 
frequency parameter a was varied in discrete quantities, while the other param- 
eters remained fixed. For each value of n, N + 1 roots were computed and 
their real and imaginary parts were printed out. Inspection of these roots 
showed whether or not the system was stable. The values of 
tion from stable to unstable regions exist were determined from interpolation. 

at which transi- 

A typical output is shown in Table 5, in which a is represented by OHM 

and the real and imaginary parts of z are ROOTR and ROOTI, respectively. 
For this particular set of data, the system is unstable (since a root exists having 
an absolute value greater than 1) for values of W between (approximately) 9.53  

and 9.77. 

5 . 2  BEAM WITHOUT DIRECTIONAL CONTROL SYSTEM AND WITH NO 
LONGITUDINAL COMPLIANCE 

Figure 10 shows regions of instability associated with the two lowest non- 
zero frequencies which were computed with the method described in the preceding 
section. The computations were carried out for the case where two bending 
degrees of freedom were assumed; a value of y = 0 . 1  was used. The ratio of 
longitudinal frequency to fundamental bending frequency was taken in this case 
to be infinite, so that, according to Eqs. (2.10) and (2. 13), the beam response 
longitudinally is the same as that of a rigid bar. It may be shown from the defini- 
tions of Eq. (2.26) that in such a case the matrix [qk] in Eq. (2.25) reduces to 

a matrix containing only the bending coordinates q 1 9  92 9 > qN'  
32=2W 

(2) ' Only the regions of instability in the vicinity of a = 2 0  
(1) ' 

are shown in the figure. These loci may be determined from = I ;(2) * ;( 1) I 
the frequency curves corresponding to N = 2 in Fig. 6. "Higher order" regions 
of instability, occurring in the vicinity of E = 2 0  /n , 52 = 2 Z(2)/n , and 

0 = (W f W )/n , n > 1 , may also exist, but are  not shown. An investiga- 
tion was made in an attempt to define such regions for n = 2 . 

- 
- ( 1) 

(2) (1) 
In every case, 
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Fig. 10 Instability Regions Associated with Two Lowest Frequencies Using 
Two Bending Degrees of Freedom (y = 0 . 1  , w = m) L 
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however, such regions were either nonexistent or were so narrow that on the 

plot of Fig. 10 they would appear as very thin lines. 
From Fig. 10 we see that the Type-2 region expected in the vicinity of 

failed to occur. However, note that the Type-2 region in the 
appears with a comparatively wide band of instability. 

- 
Q = G  
vicinity of 32 = CZ - (2) + %) 

(2) - *(1) 
Figure 11 shows the same regions a s  Fig. 10 with the exception that three 

bending degrees of freedom were assumed in the analysis. Qualitatively, the 
results are  essentially the same as  in the case where two bending degrees of 
freedom were used (Fig. lo) ,  the difference being primarily that the loci of 

(2) 
and 6 are slightly changed. 

Figure 1 2  shows the effect on the unstable regions due to varying y . * A 
7 1) 

value of To = 60 w a s  chosen and two bending degrees of freedom were assumed, 
a s  in the case portrayed in Fig. 10. Also, a s  in that case, the fundamental 
longitudinal frequency was assumed to be infinite. We note from Fig. 12 that 
the widths of the unstable regions considered here increase approximately 
linearly with y . Mettler shows (Ref. 5) that the higher-order regions (the un- 
stable regions impinging upon the y = 0 axis in the vicinity of 2w(k )/n and 
[ I W ( ) f W ( k  ) I ]  /n > 1 ) do not have this property, but rather that the boundaries 
of such regions approach a vertical tangency at the y = 0 axis. Thus, for 
small y , it is not expected that such regions will have much practical significance. 

Computations performed with values of To other than To = 60 indicated 
that the linearity property (between region width and y) shown in Fig. 12 holds 
generally for all values of T 

values z = cos 2nu obtained as solutions to Eq. (4.22) for values of 5 in the 
vicinities of expected regions of instability. Three bending degrees of freedom 
were used and Y = 0.2 and ;I; = 60.0 were assumed. A s  pointed out earlier, 
for the parameters here assumed, the matrix of coordinates [qk] contains only 

the N bending coordinates q1 , q2 , . . . , qN . Thus the characteristic equation 

is a polynomial of degree N , so that three solutions for cos 27ra are expected. 
These solutions are presented in the three columns of the tables. 

for the cases considered in Figs. 10 and 11. 0 
Tables 1 through 5 show the results of computations of the characteristic 

0 

*The coordinates used in Fig. 12 are analogous to those used in the conventional 
plot of stable and unstable regions for the Mathieu equation. 
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Fig. 11 Instability Regions Associated with Two Lowest Frequencies Using 
Three Bending Degrees of Freedom ( y  = 0 . 1  , w = m) L 
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CUI= FUNDAMENTAL BENDING FREQUENCY (UNLOADED) 
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Fig. 12 Effect of y on the Unstable Regions (N = 2 , To = 60 , wL = ") 
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Table 1 

CHARACTERISTIC VALUES IN VICINITY OF a = 2 w 
( 1) (To = 6 0 ,  y = 0.2 ,  N = 3) 

OHM= 1.190 
ROOTR 
ROOTI 

ROOTR 
ROOTI 

ROOTR 
ROOT I 

ROOT R 
ROOT I 

ROOTR 
ROOT I 

ROOTR 
ROOT I 

ROOTR 
ROOTI 

ROOT R 
ROOTI 

ROOTR 
ROOT I 

ROOTR 
ROOT I 

ROOT R 
ROOT I 

OHM = 1.300 
ROOT R 
ROOT I 

o m  = 1.200 

OHM = 1.210 

OHM = 1.220 

OHM = 1.230 

OHM = 1.240 

OHM = 1.250 

OHM = 1.260 

OHM = 1.270 

OHM = 1.280 

OHM = 1.290 

UNST 

1 

BLE 

0.94326 
0. 0 

0.99204 
0.0 

0.99657 
0. 0 

0.95883 
0.0 

0.88239 
0. 0 

0.77214 
0.0 

0.63395 
0. 0 

0.47433 
0.0 

I 

-0.29302 
0. 0 

-0.37350 
0. 0 

-0.45022 
0.0 

-0.52278 
0.0 

0.41937 
0. 0 

0.33032 
0. 0 

0.23958 
0 . 0  

0.14810 
0.0 

0.05674 
0.0 

-0.03373 
0.0 

-0. I2259 
0. 0 

-0.20921 
0.0 

0.30010 
0.0 

0.11806 
0. 0 

-0.. 065 18 
0.0 

-0.24349 
0.0 

cos 2nal 
1 

I I 
-1.00668 ' 
0.0 

-1.00969 
0.0 

-1.01199 
0 . 0  

-1.01360 
0.0 

-1.01457 
0.0 

-1.01493 
0 .0  

-1.01472 
0.0 

-1.01398 
0.0 

-1.01273 
0.0 

-1.01102 
0.0 

-1.00888 
0 . 0  

-1.00634 
0.0 

OHM = h 
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Table 2 
- 

CHARACTERISTIC VALUES IN VICINITY OF w = w 
(To = 6 0 ,  y = 0 . 2 ,  N = 3) (2) - “(1) 

OHM = 1.530 
ROOT R 
ROOT I 

ROOT R 
ROOT I 

ROOT R 
ROOT I 

ROOT R 
ROOT1 

ROOT R 
ROOT I 

ROOT R 
ROOT I 

ROOT R 
ROOT I 

ROOTR 
ROOT I 

ROOT R 
ROOT I 

ROOT R 
ROOT I 

ROOT R 
ROOT I 

ROOT R 
ROOT I 

OHM = 1.540 

OHM = 1.550 

OHM = 1.560 

OHM = 1.570 

OHM = 1.580 

OHM = 1.590 

OHM = 1.600 

OHM = 1.610 

OHM = 1.620 

OHM = 1.630 

OHM = 1.640 

4BLE 

cos 2 n a  

I ’ 0,57235 
0.0 

0.67282 
0.0 

0.76109 
0.0 

0.83621 
0.0 

0.89752 
0.0 

0.94457 
0.0 

0.97722 
0.0 

0.99552 
0 .0  

0.99973 
0.0 

0.99032 
0.0 

0.96792 
0.0 

0.93328 
0.0 

-0.86976 
0.11080 

-0.84953 
0.11883 

-0.82807 
0.12558 

-0.80586 
0. 13085 

-0.78139 
0. 13479 

-0.75690 
0.13686 

-0.73148 
0.13704 

-0.70530 
0. 13510 

-0.67847 
0.13072 

-0.65108 
0,12345 

-0.62322 
0.11255 

-0.59498 
0.09668 

-0.86976 
-0.11080 

-0.84953 
-0.11883 

-0.82807 
-0.12558 

-0.80586 
-0. 13085 

-0.78139 
-0. 13479 

-0.75690 
-0.13686 

-0.73148 
-0. 13704 

-0.70530 
-0.13510 

-0.67847 
-0.13072 

-0.65108 
-0.12345 

-0.62322 
-0.11255 

-0.59498 
-0.09668 

OHM = a 
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- CHARACTERISTIC VALUES IN VICINITY OF = T3 
(To = 6 0 ,  y = 0 . 2 ,  N = 3) (2) + “1) 

OHM= 2.772 
ROOT R 
ROOT I 

ROOTR 
ZOOTI 

OHM = 2.776 
ROOT R 
ROOT I 

ROOTR 
ROOT I 

OHM= 2.780 
ROOTR 
ROOT I 

OHM= 2.782 
ROOT R 
ROOTI 

ROOTR 
ROOTI 

ROOTR 
ROOT I 

ROOT R 
ROOT I 

ROOT R 
ROOTI 

OHM = 2.792 
ROOTR 
ROOT I 

ROOTR 
ROOTI 

OHM = 2.774 

OHM= 2.778 

OHM= 2.784 

OHM= 2.786 

OHM= 2.788 

OHM = 2.790 

OHM = 2.794 

ST, 

1 

3LE 

cos 2acY ‘ ‘ 0.07840 
0 .0  

0.07697 
0.0 

0.07532 
0 .0  

0.07326 
0.0 

0.07024 
0 .0  

0.06363 
0.0 

-0.08504 
0 .0  

0.08423 
0.0 

0.07677 
0 .0  

0.07342 
0 . 0  

0.07104 
0.0 

0.06901 
0 .0  

0.31187 
0 .0  

0.31002 
9.0 

0.30805 
0 .0  

0.30578 
0 . 0  

0.30274 
0 .0  

0,29681 
0 .0  

0.23536 
0 .0  

0.31724 
0 . 0  

0.30904 
0.0 

0.30577 
0.0 

0.30364 
0.0 

0.30197 
0.0 

1 -0.06334 
0.0 

-0.07114 
0.0 

-0.07893 
0.0 

-0.08673 
0.0 

-0.09454 
0.0 

-0.10246 
0.0 

-0.14308 
0.0 

-0. 11724 
0.0 

-0.12511 
0.0 

-0.13285 
0.0 

-0. 14055 
0.0 

-0.14822 
0.0 

OHM = 3i 
ROOTR = (COS ~ T C V ~ E A L  
ROOT I = (cos 2 7 r c ~ ) ~ ~ ~ ~ .  
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Table 4 

CHARACTERISTIC VALUES IN VICINITY OF = 2w 
(To = 6 0 ,  y = 0 . 2 ,  N = 3) (2) 

OHM = 4.290 
ROOT R 
ROOT I 

ROOTR 
ROOT I 

ROOTR 
ROOT I 

OHM = 4.320 
ROOT R 
ROOT I 

ROOT R 
ROOT I 

ROOT R 
ROOT I 

ROOT R 
ROOT I 

ROOTR 
ROOT I 

ROOTR 
ROOT I 

OHM = 4.380 
ROOT R 
ROOT I 

ROOT R 
ROOT I 

ROOT R 
ROOT I 

OHM = 4.300 

OHM = 4.310 

OHM = 4.330 

OHM = 4.340 

OHM = 4.350 

OHM = 4.360 

OHM= 4.370 

OHM = 4.390 

OHM = 4.400 

UNS' LBLE 

' 0.71079 
0.0 

0.72213 
0.0 

0.73325 
0.0 

0.74414 
0. 0 

0.75480 
0.0 

0.76523 
0.0 

0.77543 
0.0 

0.78538 
0.0 

0.79510 
0.0 

0.80458 
0.0 

0. 81381 
0.0 

0.82281 
0.0 

0.62690 
0.0 

0.62864 
0 .0  

0.63034 
0 .0  

0.63201 
0.0 

0.63365 
0.0 

0.63528 
0.0 

0.63688 
0.0 

0.63847 
0.0 

0.64004 
0.0 

0.64160 
0.0 

0.64314 
0.0 

0.64467 
0.0 

cos 2 n a  

J 
-1.00459 ' 
0. 0 

-1.00483 
0.0 

-1.00502 
0.0 

-1.00515 
0.0 

-1.00522 
0. 0 

-1.00525 
0.0 

-1.00522 
0.0 

-1. 00514 
0.0 

-1.00500 
0.0 

-1.00482 
0.0 

-1.00459 
0.0 

-1.00431 
0.0 

OHM = 
ROOT R = (COS ~TCY)REAL 
ROOT1 = (cos 27ra)IMAG. 
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Table 5 

CHARACTERISTIC VALUES IN VICINITY OF V = 2 3  
(3) (To = 6 0 ,  y = 0 . 2 ,  N = 3) 

I OHM= 9.400 
ROOTR 
R r n I  

OHM= 9.450 I 
STABLE 

OHM= 9.550 
ROOTR 
ROOT I 

OHM = 9.600 
ROOTR 
ROOTI 

ROOTR 
ROOT I 

ROOTR 
ROOTI 

ROOTR 
ROOT I 

OHM= 9.650 UNSTABLE 

OHM= 9.700 

OHM= 9.750 

OHM = 9.800 

ROOTI 

ROOTR STABLE 
ROOTI 

OHM = 9.900 
ROOTR 
ROOTI 

OHM = 9.850 

cos 2 7rcY 

k 
' 0.91789 

0 , o  

0.91875 
0.0 

0.91959 
0.0 

0.92042 
0.0 

0.92123 
0.0 

0.92203 
0.0 

0.92282 
0.0 

0.92360 
0.0 

0.92437 
0.0 

0.92513 
0.0 

0.92587 
0.0  

0.11735 
0.0 

0.12498 
0.0 

0.13253 
0.0 

0.14000 
0.0 

0.14737 
0.0 

0.15467 
0.0 

0.16188 
0.0 

0.16900 
0. 0 

0.17605 
0.0 

0,18301 
0.0 

0.18990 
0.0 

1 -0.99737 
0.0 

-0.99863 
0 .0  

-0.99960 
0. 0 

-1.00028 
0.0  

-1.00067 
0.0 

-1.00079 
0.0 

-1.00065 
0.0 

-1.00025 
0.0 

-0.99961 
0.0 

-0.99872 
0.0 

-0.99759 
0. 0 

OHM = a 
ROOTR = (COS ZT~Y)REAL 

MAG. ROOTI = (cos 2na) 
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From the solutions z = cos 2na , we may determine R and P such that 

Reia = z *- (5.2) 

From Eq. (4.23) it follows that 

i P 1 n R  
a! = - -((InR + ip) = - -  2n 2 r  i- 2n 

and 

(5.3) 

We define a growth factor, designated G. F. , as the increase of the factor 
e 1nR’2n % , when 7 is such that the oscillatory term e iP/2n * has ex- 

perienced one complete cycle, that is, when 
we obtain 

= 2 n .  With this definition, 

2n 2n - 1nR 7 G. F. = e P = R  (5.5) 

The growth factor is indicative of the severity os a given instability. For a 
given region of instability, it is necessary to compute the growth factors corre- 
sponding to several values of z to determine the most severe instability in 
that region. It is reasonable to expect, however, that in the Type-1 instability 
regions the maximum growth factor will occur in the vicinity where the absolute 
value of z exceeds 1 by the greatest amount. In the Type-2 regions, the maxi- 
mum growth factor is expected to be close to the point where the imaginary part 
of z is the greatest. 

Each of the sets of data in Tables 1 through 5 represents solutions for 
values of 32 on each side of certain expected regions of instability. In Table 6 
are computed the growth factors corresponding to the solutions in Tables 1 
through 5. These factors were found to give the most severe instability for 
each of the regions involved. 
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Note that the growth factors corresponding to the most severe conditions 

and 2W 

respectively. The decreasing trend of these growth factors indicates that the 
instabilities associated with the lower frequencies a re  probably the most severe. 
The largest growth factor is associated with the region a = 

instabilities were found in the vicinity of 

(3) ’ given in Tables 1, 4, and 5 apply to the regions = 2; 2w 
(1) ’ (2) ’ 

- - . No 
“(2) - “cs 

= 0 (2) + ‘“(1) - 
5 . 3  BEAM WITH DIRECTIONAL CONTROL SYSTEM AND LONGITUDINAL 

COMPLIANCE 

Values of KO = 1.0 and 5, = 0 . 5  were arbitrarily chosen for the study 
of a beam subjected to a thrust whose direction is controlled by an attitude feed- 
back system (as described in Section 2).  A parametric study showing the effect 
of values of K 

study would have no significant qualitative value. The only anticipated variation 
would be a change in the location of the unstable regions. (These regions would 
necessarily change, since the vibration frequencies themselves are functions of 

these parameters.) 

well behaved for values of To up to approximately 2 7 . 5  (the exact solution gives 
25. 67). Stability considerations are  limited to values of To in this range. 

Several values of 23, (the ratio of the fundamental longitudinal frequency 
to the fundamental bending frequency) were considered. A value of y = 0 . 1  

was assumed for all analyses in this category. It was shown in subsection 5 . 2 ,  

that for the case of the beam with no feedback control, the widths of the unstable 
regions considered were approximately proportional to y . For the beam with 
feedback control, a number of cases were run for a value of y = 0 . 0 5  , which 
indicated that this linearity relationship continues to obtain. The results of 
these investigations, however, a re  not presented here. 

and 5 ,  other than those selected was not made, since such a 

From Fig. 9,  we see that the frequencies for this choice of parameters are  

Two bending degrees of freedom were assumed in addition to the rigid-body 
coordinates. After eliminating the coordinate qA , three coordinates -qg, 
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q1 , and q, -remain. Thus the matrix [qkl of Eq, (2.25) is - -  

Considering a larger number of bending degrees of freedom would improve the 
accuracy but increase the difficulty of the computations. Qualitatively, it is 
not expected that the results would be greatly changed. 

The curves of Fig. 13 show the variations of the frequencies as the thrust 

and ij so 
(2) 

is increased. The frequencies are designated iZ 
named because of the predominance of motion in the coordinates qB , q1 , and 
q2 , respectively. The curves of U and Z j  are the same as those that 
in Fig. 8 correspond to the values KO = 1.0 and 5, = 0.5 . 

CB) , 41, , 

(B) ( 1) 

Regions of instability are expected when s2 is in the vicinity of either 

0 Twice the frequencies, or 
0 The sum or difference of any two of the frequencies shown in 

Fig. 13 

The unstable regions actually computed for these vicinities are  shown in Fig. 14 
for a value of ZL = 100.0 -a value which, for the purposes of this investiga- 
tion, is essentially infinite (i. e. , the beam is longitudinally very stiff). In some 
cases no instabilities were located in the vicinities of expected unstable regions. 
Such cases are  indicated by a dashed line. In some cases instabilities were 
found, but the regions were  so narrow that they only appear as solid curves in 

- 
the figure (note, for example, H = 2W ( 1) ). In one case (n = “2)  + Ti)), a 
narrow unstable region disappears completely beyond an intermediate value of 

To . although no instabilities were found for 
the smaller values of To , a narrow region developed beyond an intermediate 
value of To . 
region of instability exists in the vicinity of a = 

arbitrarily small values of To (see Figs. 10 and 11). 

- - - 
In another case (32 = w ( ~ )  - 

This is in contrast to the case of KO = 0 , for which a definite 

apparently for 
- 

(2) - *(1) , 

The unstable regions for a longitudinal frequency % = 4.0 are shown in 

Fig. 15. The most significant difference between this case and the previous case 
is the presence of a new region of instability in the vicinity of H = 4.0. The 
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Fig. 13 Coupled Frequencies of System with Feedback Control 
(N = 2 ,  KO = 1.0, E ,  = 0.5) 
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Fig. 14 Unstable Regions for Beam with Feedback Control (wL = 100 , 
N = 2 ,  y = 0.1, % = 1.0, 5,  = 0 .5 )  
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Fig. 15 Unstable Regions for Beam with Feedback Control ( GL = 4.0 , 
N = 2 ,  y = 0.1, Kg = 1.0, EG = 0.5) 
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existence of this new region arises from the fact that the elements in the arrays 

is in the vicinity of 
an integral multiple of DL (see Eqs. (2.13) and (2.26)). Thus, the determinants 
A.(B.) , normally quite small for small y , become very large, and consequently 

the coefficients K. of Eq. (4.22) become large also. It is to be expected, 
therefore, that in this case the solutions z = cos 2na will likewise become large, 
exceeding an absolute value of unity and thus indicating unstable sdutions. 

defined in Eq. (4. €9, become very large when 
.r Dm, m*l '  

J J  

1 

The unstable regions for zSL = 2 . 0  are shown in Fig. 16. In this case, the 
unstable region which might be expected in the vicinity of 
reasms described h tAe preceding paragraph) appears to merge with the region 

A relatively broad region of instability expected in the vicinity of 
results. Additionally, an unstable region appears in the vicinity of = 4.0 , 
which is twice GL . Although not shown here, unstable regions might also be 
expected in the vicinity of = 6 . 0  , 8.0, etc. 

The three axes correspond to a, To , and ZL . 
stable region corresponding to 3i = 21J(1) appears as  a line in the figure. Other 

unstable regions exist (see Fig. 14) but are omitted from this drawing. When 
o = 4.0 , a region of instability appears at = 4.0 and a = 8 . 0  (also at 
12.0, 16.0, etc.). However, the unstable region in the vicinity of 32 = 2G 
as yet relatively unchanged. When B L  = 2.0 , a broad unstable region exists 
in the vicinity of H = 2. o . Unstable regions also exist in the vicinity of 
S2 = 4 .0 ,  6 . 0 ,  8 . 0 ,  etc. 

= 2.0 (for the 

(1) - = 2w 

Figure 17 is a concise illustration of the effect of longitudinal frequencies. 
For OL = 100.0, the un- 

- 

- 
L 

is 
( 1) 

- 
Tables 7 through 14 show sample computer results for values of 32 in the 

vicinity of some of the critical regions. Tables 7 through 12 correspond to the 
- - 

regions 3i = 2G 
2Z(2, in Fig. 14 for a value of To = 10 . 

and to (B) ' '(1) + G(B)-' "(1) ' '(2) - "(B) ' "(2) + '(33) ' 
\ - I  

Tables 13 and 14 show the solutions z = cos 2 x 0  in the vicinity of 3 = 2.0 

and H = 4.0 for iZL = 2 and To = 10 . 
meaningless, since, for these cases, infinite values for the elements in the arrays 

Dm, m=tl 

The solutions for 3 = 2.0 or 4.0 are 

are obtained. 

Even in the near-resonance regions, the large amount of longitudinal motion 
makes the assumption that 2 << 1 questionable. However, on the basis of 

assumed typical values of missile acceleration, frequency, and length, it may 
be shown that even for a value of 3 = 3.99 (in the case of 5, = 2.0),  the max- 

Ir 

imum value of -& is still of the order of magnitude of only 1 to 2%, i. e . ,  it ax 
is still very small in comparison to unity. 
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Fig. 16 Unstable Regions for Beam with Feedback Control (GL = 2 . 0  , 
N = 2 ,  y = 0.1, KO = 1.0, 5 = 0.5) G 
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Fig. 17 Typical Effect of Longitudinal Frequency (N = 2 , 
y = 0.1, KO = 1 . 0 ,  5, = 0.5) 

Fig. 17 Typical Effect of Longitudinal Frequency (N = 2 , 
y = 0.1, KO = 1 . 0 ,  5, = 0.5) 
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Table 7 

CHARACTERISTIC VALUES IN VICINITY OF = 2E3 (B) - 
(JL = 1 0 0 ,  To = 1 0 ,  y = 0 . 1 ,  N = 2) 

OHM = 0.574 
ROOT R 
ROOT I 

ROOT R 
ROOT I 

ROOT R 
ROOT I 

ROOT R 
ROOTI 

OHM = 0.582 
ROOT R 
ROOT I 

ROOT R 
ROOT I 

OHM = 0.586 
ROOT R 
ROOT I 

ROOT R 
ROOT I 

ROOTR 
ROOT I 

OHM = 0.576 

OHM = 0.578 

OHM = 0.580 

OHM = 0.584 

OHM = 0.588 

OHM = 0.590 

I 
4 

STABLE 

UNSTABLE 1 
I 
0 

STABLE 
I 

'-0.99955 
0.0 

-0.99981 
0.0 

-1.00043 
0.0 

-1.00065 
0.0 

-1.00075 
0.0 

-1.00074 
0.0 

-1.00060 
0.0 

-1.00034 
0.0 

-0.99996 
0.0 

-0.52865 
0.0 

-0.55885 
0.0 

-0.58811 
0.0 

-0.61642 
0.0 

-0.64375 
0.0 

-0.67010 
0. 0 

-0.69545 
0.0 

-0.71978 
0.0 

-0.74310 
0.0 

cos 27ra 

k 
-0.99667 ' 
0.0 

-1.00015 
0.0 

-0.99344 
0. 0 

-0.97766 
0.0 

-0.95288 
0.0 

-0.91950 
0.0 

-0.87801 
0.0 

-0.82895 
0.0 

-0.77289 
0.0 

OHM = 

. 

ROOTR = (COS ~ T Q ) R E A L  
ROOTI * (cos 2 ~ a ) ~ ~ ~ .  
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Table 8 

+ %) CHARACTERISTIC VALUES - IN VICINITY OF T€ = Z(1) 
(ZL = 100 , To = 10 , Y = 0.1, N = 2) 

OHM= 1.234 
RUQTR 
ROOTI 

ROOTR 
ROOT I 

ROOTR 
ROOT I 

ROOTR 
ROOT I 

ROOTR 
ROOTI 

ROOT R 
ROOTI 

OHM = 1.246 
ROOT J t  
ROOTI 

ROOTR 
ROOT - 

ROOT R 
ROOTI 

OHM= 1.252 
ROOTR 
ROOT I 

ROOTR 
ROOT I 

OHM = 1.256 
ROOTR 
ROOTI 

OHM = 1.236 

OHM= 1.238 

OHM = 1.240 

OHM = 1.242 

OHM= 1.244 

OHM = 1.248 

OHM = 1.2ao 

OHM= 1.254 

L 

UNST 

1 

BLE 

cos 2aa 

I I 
' 0.81183 
0.0 

0.82411 
0.0 

0.83597 
0.0 

0.84742 
0.0 

0.85845 
0.0 

0.86907 
0.0 

0.87926 
0.0 

0.88904 
0.0 

0.89840 
0.0 

0.90734 
0.0 

0.91586 
0.0 

0.92396 
0.0 

0.10827 
0.03859 

0.10558 
0.04187 

0.10290 
0.04433 

0.10022 
0.04609 

0.09754 
0.04725 

0.09486 
0.04784 

0.09231 
0.04790 

0.08958 
0.04743 

0.08693 
0.04642 

0.08428 
0.04484 

0.08164 
0.04263 

0.07900 
0.03969 

0.10827 ' 
-0.03859 

0.10558 
-0.04187 

0.10290 
-0.04433 

0.10022 
-0.04609 

0.09754 
-0.04725 

0.09486 
-0.04784 

0.09231 
-0.04790 

0.08958 
-0.04743 

0.08693 
-0.04642 

0.08428 
-0.04484 

0.08164 
-0.04263 

0.07900 
-0.03969 

OHM = E 
ROOTR = (cos 2 ~ 0 ) ~ ~ ~ ~  
ROOTI = (cos 2 ~ 0 9 ~ ~ ~ .  
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Table 9 

CHARACTERISTIC VALUES IN VICINITY OF E = 2G 
(GL = 100,  To = 1 0 ,  9' = 0 . 1 ,  N = 2) (1) 

OXM = 1.896 
ROOT R 
ROOT I 

OHM 1.898 
ROOT R 
ROOT I 

ROOT R 
ROOT I 

OHM = 1.902 
ROOT R 
ROOT I 

ROOT R 
ROOT I 

ROOT I 
OHM = 1.908 

ROOT R 
ROOT I Q 

OHM = 1.910 
ROOT R 
ROOT T 

OHM= 1.9 2 
ROOT R 
ROOT I 

ROOT R 
ROOT I 

OHM = 1.916 
ROOT R 
ROOT I 

CHlM = 1.900 STABLE 

OHM = 1.904 

OHM= 1.906 UNSTABLE 

T 
OHM = 1.914 STABLE 

cos 2na  

I I 
' 0.56452 

0.0 

0.56537 
0.0 

0.56621 
0.0 

0.56705 
0.0 

0,56789 
0. 0 

0.56873 
0.0 

0.56956 
0.0 

0.57039 
0.0 

0.57122 
0.0 

0.57205 
0.0 

0.57288 
0.0 

-0.66728 
0.0 

-0.66052 
0.0 

-0.65371 
0. 0 

-0.64687 
0.0 

-0.63999 
0.0 

-0.63307 
0.0 

-0.62612 
.o. 0 

-0.61913 
0. 0 

-0.61211 
0.0 

-0.60505 
0.0 

-0.59796 
0.0 

-0.99989 
0. 0 

-0.99993 
0.0 

-0.99997 
0.0 

-0.99999 
0.0 

-1.00001 
0.0 

-1.00001 
0. 0 

-1.00000 
0.0 

-0.99998 
0.0 

-0.99995 
0.0 

-0,99991 
0.0 

-0.99986 
0.0 

OHM = 32 
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Table 10 

CHARACTERISTIC VALUES IN VICINITY OF 32 = G(z) - %) 
(t = 100,  To = 1 0 ,  Y = 0 . 1 ,  N = 2) 

OHM= 2.290 
ROOTR 
ROOTI 

OHM = 2.292 
ROOTR 
ROOTI 

ROOTR 
ROOT I 

ROOT R 
ROOT I 

OHM= 2.298 
ROOTR 
ROOTI 

ROOTR 
ROOT I 

ROOTR 
ROOT I 

ROOTR 
ROOT I 

OHM = 2.306 
ROOTR 
ROOT I 

ROOTR 
ROOTI 

R >OTR 
ROOTI 

OHM = 2.294 

OHM = 2.296 

OHM= 2.300 

OHM = 2.302 

OHM = 2.304 

OHM = 2.308 

OHM = 2.310 

1 

STi 

0.67624 
0 . 0  

0.68014 
0.0 

0.68373 
0.0 

0.68689 
0.0 

0.68952 
0.0 

0.69159 
0.0 

0.69319 
0.0 

0.69446 
0.0 

0.69549 
0.0 

0.69638 
0.0 

0.69717 
0.0 

I 0.69678 
0.0 

0.69793 
0.0 

0.69935 
0.0 

0.70116 
0.0 

0.70347 
0.0 

0.70631 
0.0 

0.70957 
0.0 

0.71314 
0.0 

0.71690 
0.0 

0.72077 
0. 0 

0.72471 
0.0 

cos 27fa 

1 
1 

1 
-0,86405 ' 

0,  n 

-0.86290 
0.0 

-0.86174 
0.0 

-0.86059 
0.0 

-0.85943 
0.0 

-0.85827 
0.0 

-0.85711 
0.0 

-0.85594 
0.0 

-0.05477 
0.0 

-0.85360 
0.0 

-0.85243 
0.0 

OHM = D 
REAL ROOTR = (cos 27ra) 

ROOTI = (cos 2 7 ~ 0 3 ~ ~ ~ ~ .  



Table 11 

CHARACTERISTIC VALUES IN VICINITY OF 32 = “(2) + G ( g )  
(% = 100,  To = 1 0 ,  = 0.1,  N = 2) 

OHM = 2.878 
ROOT R 
ROOT I 

OHM = 2.879 
ROOT R 
ROOT I 

ROOT R 
ROOT I 

ROOT R 
ROOT I 

OHM = 2.882 
ROOT R 
ROOT I 

OHM = 2.883 
ROOT R 
ROOT I 

ROOT R 
ROOT I 

OHM = 2.885 
ROOT R 
ROOT I 

ROOT R 
ROOT I 

OHM = 2.887 
ROOT R 
ROOT I 

OHM = 2.888 
ROOT R 
ROOT I 

OHM = 2.880 

OHM = 2..881 

OHM = 2.884 

OHM = 2.886 

UNST 

1 

0.80584 
0.00300 

0.80533 
0.00362 

0.80482 
0.00404 

0.80430 
0.00434 

0.80379 
0.00452 

0.80327 
0.00460 

0.80275 
0.00459 

0.80224 
0.00449 

0.80172 
0.00429 

0.80120 
0.00397 

0.80067 
0.00350 

I 0.80584 
-0.00300 

0.80533 
-0.00362 

0.80482 
-0.00404 

0.80430 
-0.00434 

0.80379 
-0.00452 

0.80327 
-0.00460 

0.80275 
-0.00459 

0.80224 
-0.00449 

0.80172 
-0.00429 

0.80120 
-0.00397 

0.80067 
-0.00350 

LB LE 

cos 27rcY 

J 
i -0.48742 

0.0 

-0.48679 
0 .0  

-0.48615 
0.0 

-0.48552 
0.0 

-0.48489 
0.0 

-0.48426 
0.0 

-0.48363 
0.0 

-0.48300 
0.0 

-0.48237 
0.0 

-0.48174 
0.0 

-0.48111 
0.0 

OHM = a 
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Table 12 

I 

CHARACTERISTIC VALUES IN VICINITY OF 3 = 2rS 
(% = 100, To = 1 0 ,  y = 0.1,  N = 2) (2) 

OHM= 5.170 
ROOT R 
ROOT I 

OHM = 5.172 
ROOT R 
ROOT I 

OHM = 5.174 
ROOTR 
ROOT I 

ROOTR 
ROOT I 

ROOTR 
ROOT I 

ROOT R 
ROOT I 

OHM = 5.182 
ROOT R 
ROOT I 

OHM= 5.184 
ROOT R 
ROOT I 

ROOTR 
ROOT I 

OHM = 5.188 
ROOTR 
ROOT I 

OHM = 5.190 
ROOTR 
ROOT I 

OHM= 5.192 
ROOT R 
ROOT I 

OHM = 5.176 

OHM = 5.178 

OHM = 5.180 

OHM = 5.186 

I 

UNST BLE 

cos 2ncY 

4 
0.93731 
0.0 

0.93736 
0.0 

0.93740 
0.0 

0.93745 
0.0 

0.93750 
0.0 

0.93755 
0.0 

0.93759 
0.0 

0.93764 
0.0 

0.93769 
0.0 

0.93774 
0.0 

0.93778 
0.0 

0.93783 
0.0 

I 0.40133 
0.0 

0.40174 
0.0 

0.40215 
0.0 

0.40256 
0.0 

0.40297 
0.0 

0.40338 
0.0 

0.40379 
0.0 

0.40419 
0.0 

0.40460 
0.0 

0.40501 
0.0 

0.40542 
0.0 

0.40582 
0.0 

-1.00003 ' 
0.0 

-1.00004 
0.0 

-1.00004 
0.0 

-1.00005 
0.0 

-1.00005 
0.0 

-1.00005 
0.0 

-1.00005 
0.0 

-1.00005 
0.0 

-1.00005 
0.0 

-1.00004 
0.0 

-1.00004 
0.0 

-1.00003 
0.0 

OHM = ij 
ROOTR = (cos 2rc2)kEAL 
ROOT1 = (cos 2 7 r c ~ ) ~ ~ ~ .  
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Table 13 

* 

CHARACTERISTIC VALUES IN VICINITY OF = 2.0 
(% = 2 .0 ,  To = 1 0 ,  Y = 0 .1 ,  N = 2) 

OHM = 1.920 
ROOT R 
ROOT I 

ROOT R 
ROOT I 

OHM = 1.940 
ROOT R 
ROOT I 

ROOT R 
ROOT I 

ROOT R 
ROOT I 

ROOT R 
ROOT I 

OHM = 1.980 
ROOT R 
ROOT I 

OHM = 1.990 
ROOT R 
ROOT I 

OHM = 2.000 
ROOT R 
ROOT I 

OHM = 2.010 
ROOT R 
ROOT I 

OHM = 2.020 
ROOT R 
ROOT I 

ROOT R 
ROOT I 

OHM = 1.930 

OHM = 1.950 

OHM = 1.960 

OHM = 1.970 

OHM= 2.030 

A 

UNSl 

cos 2na 

Y 

.B LE 

' 0.56279 
0.0 

0.56343 
0.0 

0.56219 
0.0 

0.55755 
0.0 

0.54592 
0.0 

0.5 1727 
0.0 

0.43503 
0.0 

0.43751 
0.0 

0.20000 
0.0 

0.48105 
0.0 

0.44836 
0.0 

0.53997 
0.0 

-0.57689 
0.0 

-0.53846 
0.0 

-0.49816 
0.0 

-0.45500 
0.0 

-0.40641 
0.0 

-0.34444 
0.0 

-0.23394 
0.0 

-0.07097 
0.0 

0.90000 
0.10000 

-0.05931 
0.0 

-0.08164 
0.0 

-0.11249 
0.0 

-1.04103 ' 
0.0 

-1.05301 
0.0 

-1.07148 
0. 0 

-1.10235 
0.0 

-1.15981 
0.0 

-1.28545 
0.0 

-1.64886 
0.0 

-3.61712 
0.0 

0.90000 
-0.10000 

-3.56733 
0.0 

-1.62351 
0.0 

-1.26277 
0.0 

OHM = 
ROOTR = (COS ~TCY)REAL 
ROOT1 = (cos 2 s ~ ~ ) ~ ~ ~ .  
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f Table 14 

CHARACTERISIlC VALUES IN VICINITY OF p = 4.0  
= 2 . 0 ,  To = 1 0 ,  7 = 0 . 1 ,  N = ' 2 )  

OHM= 3,960 
ROOTR 
ROOTI 

OHM= 3.970 
RO(Yfl3 
ROOTI 

OHM = 3.980 
ROOTR 
ROOTI 

ROOTR 
ROOTI 

OHM= 4.000 
ROOTR 
ROOTI 

ROOTR 
ROOT1 

ROOTR 
ROOTI 

OHM = 4.030 
ROOTR 
ROOTI 

ROOTR 
ROOTI 

OHM= 3.990 

OHM = 4.010 

OHM= 4.020 

OHM= 4.040 

STABLE 

1 I 
UNSTABLE 

STABLE k 
I 

cos 2 r a  
1 

' 0.88291 
0.0 

0.87510 
0.0 

0.85272 
0 .0  

0.74542 
0.0 

0.85000 
0.0 

0.74424 
0.0 

0.85425 
0.0 

0.87796 
0.0 

0.88689 
0.0 

-0.05289 
0.0 

-0. "1051 
0.0 

-0.33127 
0.30037 

-0.56082 
0.81604 

0.85000 
0.0 

-0.56369 
0.79757 

-0.33964 
0.25387 

-0.09109 
0.0 

0.00151 
0.0 

-0.49049 ' 
0.0 

-0.40583 
0.0 

-0.33127 
-0.30037 

-0.56082 
-0.81604 

1.20000 
-0.40000 

-0.56369 
-0.79757 

-0.33964 
-0.25387 

-0.51126 
0.0 

-0.57988 
0.0 

. 
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Section 6 

CONCLUSIONS 

6.1 BEAM WITH CONSTANT THRUST MAGNITUDE 

The results of the investigation of this thesis show that instabilities may 
occur in the lateral vibrational modes of a free-free beam subjected to a sufficiently 
large thrust. Because of the similarity between an actual vehicle and the mathe- 
matical model used, these results may be applied to rocket vehicles. 
appearance of the noted instabilities is characterized either by the reduction of one 
of the lateral vibrational frequencies to zero, or by the coalescence of twosuch 
frequencies. 

The initial 

6.1.1 Beam Without Directional Control 

In the case of the uniform beam with no feedback control, the initial 
instability occurs when the two lowest bending frequencies coalesce at a value 
of the nondimensional thrust parameter To = 109.9 (as shown in Fig. 6). 

Higher modes of instability occur by pairwise coalescence of the higher-frequency 
modes (as shorn in Fig. 7). 

6.1.2 Beam With Directional Control 

Introduction of a simple directional control system considerably lowers the 
magnitude of critical thrust. Variation of the characteristic frequencies with 

thrust is shown in Fig. 8 f o r  a range of values of the control parameters Ke 
and tG , when two bending degrees of freedom are used in the analysis. 
Instabilities may result from frequency coalescence; however, by proper choice 
of Ke and 5, , this coalescence (and accompanying instability) may be 
avoided (as shown in Fig. 8a and b). However, regardless of the values chosen 
for Ke and tG , the lowest frequency is reduced to zero at approximately 
To = 27.5 . The exact value of To at this critical point is determined from 
the requirement that J2,3 (2 )= 0 , from which To = 25.67 . 
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Physically, this critical thrust corresponds to the load at which the beam would 

buckle under the action of uniformly distributed inertia loads. 
On the basis of this critical load we concluded that the thrust level on 

modern missiles is considerably lower (by a factor of approximately five) than 
that which would cause buckling. However, space vehicles of the future may 

be faced with such problems. 

6.2 BEAM WITH PERIODICALLY VARYING THRUST MAGNITUDE 

When a thrust 06 magnitude To + TI cos at is assumed, the equations of 
motion are  reducible to a set of linear, second-order, ordinary differential 
equations with certain coefficients varying sinusoidally with time. A method 
for predicting the stability of the system by investigating the nature of the 
solutions to this set of equations is developed. The method is similar to the 
one used by Hill to determine the nature of the solutions of a single differential 

equation having a periodically varying coefficient (Ref. 1). 

6.2.1 Regions of Instability 

Infinite longitudinal compliance. When the beam is assumed to be very stiff 
longitudinally, unstable solutions occur for frequencies of variation of the thrust 
in the vicinity of twice one of the natural frequencies of the bending modes, or 
the sum or difference of two of these frequencies. (See, for example, Figs. 

10 and 14.) 

Finite longitudinal compliance. With finite longitudinal compliance, instabilities 
also occur for frequencies of the thrust variation in the vicinity of the longitu- 
dinal natural frequencies. These instabilities are expected to be most severe 
when the fundamental longitudinal frequency is itself in the vicinity of one of the 
already critical regions (as demonstrated in Fig. 17). 

6.2.2 Width of Unstable Regions 

Instabilities may occur for arbitrarily small magnitudes of the constant 

thrust component. However, as this component becomes larger, the band of 

c 
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thrust frequencies over which instabilities occur usually becomes larger; also 
the instabilities themselves usually become more severe at the center of the 
unstable regions (see, for example, Figs. 10, 11, 14, 15, and 16). 

Effect of thrust ratio. The width of the unstable regions investigated is approxi- 
mately linear with the ratio Y = T1 / To (as illustrated in Fig. 12). However, 
this linear relationship is not expected to hold for the %igher-orderT1 regions of 
instability, as shown by Mettler (Ref. 5). 

6.2.3 Application to Flexible Rocket Vehicles 

We conclude that the existence of parametric instabilities due to periodic 
variations in the thrust magnitude is a definite possibility in modern missiles. 
Due to the hown proximity of the fundamental longitudinal and the fundamental 

bending frequencies (at least in certain missiles), it is apparent that the longitu- 
dinal compliance of the missile may play a significant role in these instabilities. 
Although the magnitude of the thrust ratio y will probably not be as large for an 
actual missile as the values considered here, we feel  that such values may be 
sufficiently large (of order of magnitude 1 or 2%) that instabilities may develop 
which would not be overcome by structural damping. 

6.3 SUGGESTIONS FOR FURTHER STUDY 

The present study was based on the assumption that the most significant 
aspects of the problem could be determined without considering dissipative forces. 
We feel that a follow study to determine the effect of such forces on the stability 
boundaries would be useful. A first step might be to determine the effect of damping 
in the longitudinal motion. This effect would not change the basic nature of the 
differential equations, but would produce a somewhat different expression for 
the distribution of the force P I  This would be true especially in the regions of 
longitudinal resonance, where the forces P would be large but finite (as con- 

trasted with the infinite values obtained when damping was neglected). 
Other forms of velocity-dependent forces which should be considered are 

structural damping (which would always be dissipative, but not necessarily 
stabilizing (Ref. 3) and a velocity-dependent feedback system. Both of these 
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types of forces would lead to an additional matrix in Eq. (2.25) which contains 
the first derivatives of the coordinates q 
would then no longer be applicable. It is possible that some revisions in the 

theory could be made which would lead to a modified theory. In case efforts 
toward a modified theory to include the effects of damping should prove to be 
unfruitful, the method described by Chetayev (Ref. 8), referred to in Section 1, 

would appear to present a suitable method. 

differential equations with sinusoidally varying coefficients may easily be extended 
to include cases where the coefficients vary periodically in a form expressible 
as a Fourier series in time. In such a case, the elements appearing as zeroes 
in the matrix of coefficients of Eq. (4.6) would be replaced by elements contain- 
ing, as factors, coefficients of the higher-order terms in the Fourier series. 
The manner of their replacement would be very similar to the manner in which such 
terms enter the elements of Hill 's determinant (Ref. 1). 

The method developed in this thesis k '  

More generally, the method developed in this thesis for solving a system of 

. 
. 
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